Signal Strength and Metabolic Requirements Control Cytokine-Induced Th17 Differentiation of Uncommitted Human T Cells.

نویسندگان

  • Ilko Kastirr
  • Mariacristina Crosti
  • Stefano Maglie
  • Moira Paroni
  • Bodo Steckel
  • Monica Moro
  • Massimilliano Pagani
  • Sergio Abrignani
  • Jens Geginat
چکیده

IL-17 production defines Th17 cells, which orchestrate immune responses and autoimmune diseases. Human Th17 cells can be efficiently generated with appropriate cytokines from precommitted precursors, but the requirements of uncommitted T cells are still ill defined. In standard human Th17 cultures, IL-17 production was restricted to CCR6(+)CD45RA(+) T cells, which expressed CD95 and produced IL-17 ex vivo, identifying them as Th17 memory stem cells. Uncommitted naive CD4(+) T cells upregulated CCR6, RORC2, and IL-23R expression with Th17-promoting cytokines but in addition required sustained TCR stimulation, late mammalian target of rapamycin (mTOR) activity, and HIF-1α to produce IL-17. However, in standard high-density cultures, nutrients like glucose and amino acids became progressively limiting, and mTOR activity was consequently not sustained, despite ongoing TCR stimulation and T cell proliferation. Sustained, nutrient-dependent mTOR activity also induced spontaneous IL-22 and IFN-γ production, but these cytokines had also unique metabolic requirements. Thus, glucose promoted IL-12-independent Th1 differentiation, whereas aromatic amino acid-derived AHR ligands were selectively required for IL-22 production. The identification of Th17 memory stem cells and the stimulation requirements for induced human Th17/22 differentiation have important implications for T cell biology and for therapies targeting the mTOR pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Control of Th17 Cell Generation and CNS Inflammation.

Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), results from uncontrolled auto reactive T cells that infiltrate the CNS and attack the myelin sheath. Th17 cells play a prominent role in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Extensive studies have focused on understanding the roles of c...

متن کامل

Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner

Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell ...

متن کامل

P 51: The Role of T Helper 17 in Pathogenesis of Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) which causes demyelination of the nerve fibers. The etiology of this disease is not well understood but it is believed that T helpers play a central role in MS. Numerous findings support the view that Th17 cells play an essential role in pathogenesis of MS and IL-17 secreting T (Th17) cells have a role in infla...

متن کامل

Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells

A proper balance between Th17 and T regulatory cells (Treg cells) is critical for generating protective immune responses while minimizing autoimmunity. We show that the Tec family kinase Itk (IL2-inducible T cell kinase), a component of T cell receptor (TCR) signaling pathways, influences this balance by regulating cross talk between TCR and cytokine signaling. Under both Th17 and Treg cell dif...

متن کامل

The role of T helper 9(Th9) against Infectious Diseases

Background and aims: Infectious diseases are disorders caused by organisms such as bacteria, viruses, fungi or parasites .The Th9 subset develops in response to combined signals from TGF-b and IL-4 among a cacophony of other cytokines in an extracellular milieu. T helper 9 (Th9) cells,  as a novel CD4 T cell subset, seem to play a complex role in the outcome of specific immune responses. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 195 8  شماره 

صفحات  -

تاریخ انتشار 2015